2011-10-31 15 views
8

Próbuję poznać algorytm Bauma-Welcha (do użycia z ukrytym modelem Markowa). Rozumiem podstawową teorię modeli do przodu i do tyłu, ale byłoby miło, gdyby ktoś pomógł to wyjaśnić za pomocą jakiegoś kodu (łatwiej mi jest czytać kod, ponieważ mogę się nim bawić, aby to zrozumieć). Sprawdziłem github i bitbucket i nie znalazłem niczego, co byłoby łatwe do zrozumienia.Przykład implementacji Baum-Welcha

Istnieje wiele samouczków HMM w Internecie, ale prawdopodobieństwa są już dostarczone lub, w przypadku sprawdzania pisowni, dodać wystąpienia słów, aby modele. Byłoby fajnie, gdyby ktoś miał przykłady stworzenia modelu Baum-Welcha z tylko obserwacjami. Na przykład, w http://en.wikipedia.org/wiki/Hidden_Markov_model#A_concrete_example jeśli tylko miał:

states = ('Rainy', 'Sunny') 

observations = ('walk', 'shop', 'clean') 

Jest to tylko przykład, myślę, że żadnego przykładu, że wyjaśnia to i możemy grać z dobrym zrozumieć lepiej jest wielki. Mam konkretny problem, który próbuję rozwiązać, ale myślałem, że może być bardziej wartościowym, aby pokazać kod, z którego ludzie mogą się uczyć i zastosować do własnych problemów (jeśli jest to nie do zaakceptowania, mogę napisać swój własny problem). Jeśli to możliwe, byłoby miło mieć to w python (lub java).

Z góry dziękuję!

Odpowiedz

11

Oto kod, który napisałem kilka lat temu dla klasy, na podstawie prezentacji w Jurafsky/Martin (wydanie 2, rozdział 6, jeśli masz dostęp do książki). To naprawdę niezbyt dobry kod, nie używa numpy, która absolutnie powinna, i robi trochę bzdura, żeby tablice były 1-indeksowane zamiast tylko poprawiać formuły, by były indeksowane 0, ale, no, może to będzie Wsparcie. Baum-Welch jest w kodzie określany jako "forward-backward".

Przykład/dane testowe są oparte na Jason Eisner's spreadsheet, która implementuje niektóre algorytmy związane z HMM. Zauważ, że zaimplementowana wersja modelu wykorzystuje pochłaniający stan END, do którego inne stany mają prawdopodobieństwa przejścia, zamiast przyjmowania wcześniej istniejącej ustalonej długości sekwencji.

(. Także dostępny as a gist jeśli wolisz)

hmm.py, z czego połowa to kod testowanie na podstawie następujących plików:

#!/usr/bin/env python 
""" 
CS 65 Lab #3 -- 5 Oct 2008 
Dougal Sutherland 

Implements a hidden Markov model, based on Jurafsky + Martin's presentation, 
which is in turn based off work by Jason Eisner. We test our program with 
data from Eisner's spreadsheets. 
""" 


identity = lambda x: x 

class HiddenMarkovModel(object): 
    """A hidden Markov model.""" 

    def __init__(self, states, transitions, emissions, vocab): 
     """ 
     states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end') 
       start state needs to be first, end state last 
       states are numbered by their order here 
     transitions - the probabilities to go from one state to another 
         transitions[from_state][to_state] = prob 
     emissions - the probabilities of an observation for a given state 
        emissions[state][observation] = prob 
     vocab: a list/tuple of the names of observable values, in order 
     """ 
     self.states = states 
     self.real_states = states[1:-1] 
     self.start_state = 0 
     self.end_state = len(states) - 1 
     self.transitions = transitions 
     self.emissions = emissions 
     self.vocab = vocab 

    # functions to get stuff one-indexed 
    state_num = lambda self, n: self.states[n] 
    state_nums = lambda self: xrange(1, len(self.real_states) + 1) 

    vocab_num = lambda self, n: self.vocab[n - 1] 
    vocab_nums = lambda self: xrange(1, len(self.vocab) + 1) 
    num_for_vocab = lambda self, s: self.vocab.index(s) + 1 

    def transition(self, from_state, to_state): 
     return self.transitions[from_state][to_state] 

    def emission(self, state, observed): 
     return self.emissions[state][observed - 1] 


    # helper stuff 
    def _normalize_observations(self, observations): 
     return [None] + [self.num_for_vocab(o) if o.__class__ == str else o 
               for o in observations] 

    def _init_trellis(self, observed, forward=True, init_func=identity): 
     trellis = [ [None for j in range(len(observed))] 
          for i in range(len(self.real_states) + 1) ] 

     if forward: 
      v = lambda s: self.transition(0, s) * self.emission(s, observed[1]) 
     else: 
      v = lambda s: self.transition(s, self.end_state) 
     init_pos = 1 if forward else -1 

     for state in self.state_nums(): 
      trellis[state][init_pos] = init_func(v(state)) 
     return trellis 

    def _follow_backpointers(self, trellis, start): 
     # don't bother branching 
     pointer = start[0] 
     seq = [pointer, self.end_state] 
     for t in reversed(xrange(1, len(trellis[1]))): 
      val, backs = trellis[pointer][t] 
      pointer = backs[0] 
      seq.insert(0, pointer) 
     return seq 


    # actual algorithms 

    def forward_prob(self, observations, return_trellis=False): 
     """ 
     Returns the probability of seeing the given `observations` sequence, 
     using the Forward algorithm. 
     """ 
     observed = self._normalize_observations(observations) 
     trellis = self._init_trellis(observed) 

     for t in range(2, len(observed)): 
      for state in self.state_nums(): 
       trellis[state][t] = sum(
        self.transition(old_state, state) 
         * self.emission(state, observed[t]) 
         * trellis[old_state][t-1] 
        for old_state in self.state_nums() 
       ) 
     final = sum(trellis[state][-1] * self.transition(state, -1) 
        for state in self.state_nums()) 
     return (final, trellis) if return_trellis else final 


    def backward_prob(self, observations, return_trellis=False): 
     """ 
     Returns the probability of seeing the given `observations` sequence, 
     using the Backward algorithm. 
     """ 
     observed = self._normalize_observations(observations) 
     trellis = self._init_trellis(observed, forward=False) 

     for t in reversed(range(1, len(observed) - 1)): 
      for state in self.state_nums(): 
       trellis[state][t] = sum(
        self.transition(state, next_state) 
         * self.emission(next_state, observed[t+1]) 
         * trellis[next_state][t+1] 
        for next_state in self.state_nums() 
       ) 
     final = sum(self.transition(0, state) 
         * self.emission(state, observed[1]) 
         * trellis[state][1] 
        for state in self.state_nums()) 
     return (final, trellis) if return_trellis else final 


    def viterbi_sequence(self, observations, return_trellis=False): 
     """ 
     Returns the most likely sequence of hidden states, for a given 
     sequence of observations. Uses the Viterbi algorithm. 
     """ 
     observed = self._normalize_observations(observations) 
     trellis = self._init_trellis(observed, init_func=lambda val: (val, [0])) 

     for t in range(2, len(observed)): 
      for state in self.state_nums(): 
       emission_prob = self.emission(state, observed[t]) 
       last = [(old_state, trellis[old_state][t-1][0] * \ 
            self.transition(old_state, state) * \ 
            emission_prob) 
         for old_state in self.state_nums()] 
       highest = max(last, key=lambda p: p[1])[1] 
       backs = [s for s, val in last if val == highest] 
       trellis[state][t] = (highest, backs) 

     last = [(old_state, trellis[old_state][-1][0] * \ 
          self.transition(old_state, self.end_state)) 
       for old_state in self.state_nums()] 
     highest = max(last, key = lambda p: p[1])[1] 
     backs = [s for s, val in last if val == highest] 
     seq = self._follow_backpointers(trellis, backs) 

     return (seq, trellis) if return_trellis else seq 


    def train_on_obs(self, observations, return_probs=False): 
     """ 
     Trains the model once, using the forward-backward algorithm. This 
     function returns a new HMM instance rather than modifying this one. 
     """ 
     observed = self._normalize_observations(observations) 
     forward_prob, forwards = self.forward_prob(observations, True) 
     backward_prob, backwards = self.backward_prob(observations, True) 

     # gamma values 
     prob_of_state_at_time = posat = [None] + [ 
      [0] + [forwards[state][t] * backwards[state][t]/forward_prob 
       for t in range(1, len(observations)+1)] 
      for state in self.state_nums()] 
     # xi values 
     prob_of_transition = pot = [None] + [ 
      [None] + [ 
       [0] + [forwards[state1][t] 
         * self.transition(state1, state2) 
         * self.emission(state2, observed[t+1]) 
         * backwards[state2][t+1] 
         /forward_prob 
        for t in range(1, len(observations))] 
       for state2 in self.state_nums()] 
      for state1 in self.state_nums()] 

     # new transition probabilities 
     trans = [[0 for j in range(len(self.states))] 
        for i in range(len(self.states))] 
     trans[self.end_state][self.end_state] = 1 

     for state in self.state_nums(): 
      state_prob = sum(posat[state]) 
      trans[0][state] = posat[state][1] 
      trans[state][-1] = posat[state][-1]/state_prob 
      for oth in self.state_nums(): 
       trans[state][oth] = sum(pot[state][oth])/state_prob 

     # new emission probabilities 
     emit = [[0 for j in range(len(self.vocab))] 
        for i in range(len(self.states))] 
     for state in self.state_nums(): 
      for output in range(1, len(self.vocab) + 1): 
       n = sum(posat[state][t] for t in range(1, len(observations)+1) 
               if observed[t] == output) 
       emit[state][output-1] = n/sum(posat[state]) 

     trained = HiddenMarkovModel(self.states, trans, emit, self.vocab) 
     return (trained, posat, pot) if return_probs else trained 


# ====================== 
# = reading from files = 
# ====================== 

def normalize(string): 
    if '#' in string: 
     string = string[:string.index('#')] 
    return string.strip() 

def make_hmm_from_file(f): 
    def nextline(): 
     line = f.readline() 
     if line == '': # EOF 
      return None 
     else: 
      return normalize(line) or nextline() 

    n = int(nextline()) 
    states = [nextline() for i in range(n)] # <3 list comprehension abuse 

    num_vocab = int(nextline()) 
    vocab = [nextline() for i in range(num_vocab)] 

    transitions = [[float(x) for x in nextline().split()] for i in range(n)] 
    emissions = [[float(x) for x in nextline().split()] for i in range(n)] 

    assert nextline() is None 
    return HiddenMarkovModel(states, transitions, emissions, vocab) 

def read_observations_from_file(f): 
    return filter(lambda x: x, [normalize(line) for line in f.readlines()]) 

# ========= 
# = tests = 
# ========= 

import unittest 
class TestHMM(unittest.TestCase): 
    def setUp(self): 
     # it's complicated to pass args to a testcase, so just use globals 
     self.hmm = make_hmm_from_file(file(HMM_FILENAME)) 
     self.obs = read_observations_from_file(file(OBS_FILENAME)) 

    def test_forward(self): 
     prob, trellis = self.hmm.forward_prob(self.obs, True) 
     self.assertAlmostEqual(prob,   9.1276e-19, 21) 
     self.assertAlmostEqual(trellis[1][1], 0.1,  4) 
     self.assertAlmostEqual(trellis[1][3], 0.00135, 5) 
     self.assertAlmostEqual(trellis[1][6], 8.71549e-5, 9) 
     self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9) 
     self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14) 
     self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13) 
     self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22) 
     self.assertAlmostEqual(trellis[2][1], 0.1,  4) 
     self.assertAlmostEqual(trellis[2][3], 0.03591, 5) 
     self.assertAlmostEqual(trellis[2][6], 5.30337e-4, 8) 
     self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11) 
     self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15) 
     self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18) 
     self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22) 

    def test_backward(self): 
     prob, trellis = self.hmm.backward_prob(self.obs, True) 
     self.assertAlmostEqual(prob,   9.1276e-19, 21) 
     self.assertAlmostEqual(trellis[1][1], 1.1780e-18, 22) 
     self.assertAlmostEqual(trellis[1][3], 7.2496e-18, 22) 
     self.assertAlmostEqual(trellis[1][6], 3.3422e-16, 20) 
     self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15) 
     self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14) 
     self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10) 
     self.assertAlmostEqual(trellis[1][33], 0.1,  4) 
     self.assertAlmostEqual(trellis[2][1], 7.9496e-18, 22) 
     self.assertAlmostEqual(trellis[2][3], 2.5145e-17, 21) 
     self.assertAlmostEqual(trellis[2][6], 1.6662e-15, 19) 
     self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16) 
     self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14) 
     self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9) 
     self.assertAlmostEqual(trellis[2][33], 0.1,  4) 

    def test_viterbi(self): 
     path, trellis = self.hmm.viterbi_sequence(self.obs, True) 
     self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3]) 
     self.assertAlmostEqual(trellis[1][1] [0], 0.1,  4) 
     self.assertAlmostEqual(trellis[1][6] [0], 5.62e-05, 7) 
     self.assertAlmostEqual(trellis[1][7] [0], 4.50e-06, 8) 
     self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11) 
     self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12) 
     self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15) 
     self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15) 
     self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19) 
     self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19) 
     self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21) 
     self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21) 
     self.assertAlmostEqual(trellis[2][ 1][0], 0.1,  4) 
     self.assertAlmostEqual(trellis[2][ 4][0], 0.00502, 5) 
     self.assertAlmostEqual(trellis[2][ 6][0], 0.00045, 5) 
     self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9) 
     self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14) 
     self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14) 
     self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16) 
     self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18) 
     self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18) 
     self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19) 
     self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20) 

    def test_learning_probs(self): 
     trained, gamma, xi = self.hmm.train_on_obs(self.obs, True) 

     self.assertAlmostEqual(gamma[1][1], 0.129, 3) 
     self.assertAlmostEqual(gamma[1][3], 0.011, 3) 
     self.assertAlmostEqual(gamma[1][7], 0.022, 3) 
     self.assertAlmostEqual(gamma[1][14], 0.887, 3) 
     self.assertAlmostEqual(gamma[1][18], 0.994, 3) 
     self.assertAlmostEqual(gamma[1][23], 0.961, 3) 
     self.assertAlmostEqual(gamma[1][27], 0.507, 3) 
     self.assertAlmostEqual(gamma[1][33], 0.225, 3) 
     self.assertAlmostEqual(gamma[2][1], 0.871, 3) 
     self.assertAlmostEqual(gamma[2][3], 0.989, 3) 
     self.assertAlmostEqual(gamma[2][7], 0.978, 3) 
     self.assertAlmostEqual(gamma[2][14], 0.113, 3) 
     self.assertAlmostEqual(gamma[2][18], 0.006, 3) 
     self.assertAlmostEqual(gamma[2][23], 0.039, 3) 
     self.assertAlmostEqual(gamma[2][27], 0.493, 3) 
     self.assertAlmostEqual(gamma[2][33], 0.775, 3) 

     self.assertAlmostEqual(xi[1][1][1], 0.021, 3) 
     self.assertAlmostEqual(xi[1][1][12], 0.128, 3) 
     self.assertAlmostEqual(xi[1][1][32], 0.13, 3) 
     self.assertAlmostEqual(xi[2][1][1], 0.003, 3) 
     self.assertAlmostEqual(xi[2][1][22], 0.017, 3) 
     self.assertAlmostEqual(xi[2][1][32], 0.095, 3) 
     self.assertAlmostEqual(xi[1][2][4], 0.02, 3) 
     self.assertAlmostEqual(xi[1][2][16], 0.018, 3) 
     self.assertAlmostEqual(xi[1][2][29], 0.010, 3) 
     self.assertAlmostEqual(xi[2][2][2], 0.972, 3) 
     self.assertAlmostEqual(xi[2][2][12], 0.762, 3) 
     self.assertAlmostEqual(xi[2][2][28], 0.907, 3) 

    def test_learning_results(self): 
     trained = self.hmm.train_on_obs(self.obs) 

     tr = trained.transition 
     self.assertAlmostEqual(tr(0, 0), 0,  5) 
     self.assertAlmostEqual(tr(0, 1), 0.1291, 4) 
     self.assertAlmostEqual(tr(0, 2), 0.8709, 4) 
     self.assertAlmostEqual(tr(0, 3), 0,  4) 
     self.assertAlmostEqual(tr(1, 0), 0,  5) 
     self.assertAlmostEqual(tr(1, 1), 0.8757, 4) 
     self.assertAlmostEqual(tr(1, 2), 0.1090, 4) 
     self.assertAlmostEqual(tr(1, 3), 0.0153, 4) 
     self.assertAlmostEqual(tr(2, 0), 0,  5) 
     self.assertAlmostEqual(tr(2, 1), 0.0925, 4) 
     self.assertAlmostEqual(tr(2, 2), 0.8652, 4) 
     self.assertAlmostEqual(tr(2, 3), 0.0423, 4) 
     self.assertAlmostEqual(tr(3, 0), 0,  5) 
     self.assertAlmostEqual(tr(3, 1), 0,  4) 
     self.assertAlmostEqual(tr(3, 2), 0,  4) 
     self.assertAlmostEqual(tr(3, 3), 1,  4) 

     em = trained.emission 
     self.assertAlmostEqual(em(0, 1), 0,  4) 
     self.assertAlmostEqual(em(0, 2), 0,  4) 
     self.assertAlmostEqual(em(0, 3), 0,  4) 
     self.assertAlmostEqual(em(1, 1), 0.6765, 4) 
     self.assertAlmostEqual(em(1, 2), 0.2188, 4) 
     self.assertAlmostEqual(em(1, 3), 0.1047, 4) 
     self.assertAlmostEqual(em(2, 1), 0.0584, 4) 
     self.assertAlmostEqual(em(2, 2), 0.4251, 4) 
     self.assertAlmostEqual(em(2, 3), 0.5165, 4) 
     self.assertAlmostEqual(em(3, 1), 0,  4) 
     self.assertAlmostEqual(em(3, 2), 0,  4) 
     self.assertAlmostEqual(em(3, 3), 0,  4) 

     # train 9 more times 
     for i in range(9): 
      trained = trained.train_on_obs(self.obs) 

     tr = trained.transition 
     self.assertAlmostEqual(tr(0, 0), 0,  4) 
     self.assertAlmostEqual(tr(0, 1), 0,  4) 
     self.assertAlmostEqual(tr(0, 2), 1,  4) 
     self.assertAlmostEqual(tr(0, 3), 0,  4) 
     self.assertAlmostEqual(tr(1, 0), 0,  4) 
     self.assertAlmostEqual(tr(1, 1), 0.9337, 4) 
     self.assertAlmostEqual(tr(1, 2), 0.0663, 4) 
     self.assertAlmostEqual(tr(1, 3), 0,  4) 
     self.assertAlmostEqual(tr(2, 0), 0,  4) 
     self.assertAlmostEqual(tr(2, 1), 0.0718, 4) 
     self.assertAlmostEqual(tr(2, 2), 0.8650, 4) 
     self.assertAlmostEqual(tr(2, 3), 0.0632, 4) 
     self.assertAlmostEqual(tr(3, 0), 0,  4) 
     self.assertAlmostEqual(tr(3, 1), 0,  4) 
     self.assertAlmostEqual(tr(3, 2), 0,  4) 
     self.assertAlmostEqual(tr(3, 3), 1,  4) 

     em = trained.emission 
     self.assertAlmostEqual(em(0, 1), 0,  4) 
     self.assertAlmostEqual(em(0, 2), 0,  4) 
     self.assertAlmostEqual(em(0, 3), 0,  4) 
     self.assertAlmostEqual(em(1, 1), 0.6407, 4) 
     self.assertAlmostEqual(em(1, 2), 0.1481, 4) 
     self.assertAlmostEqual(em(1, 3), 0.2112, 4) 
     self.assertAlmostEqual(em(2, 1), 0.00016,5) 
     self.assertAlmostEqual(em(2, 2), 0.5341, 4) 
     self.assertAlmostEqual(em(2, 3), 0.4657, 4) 
     self.assertAlmostEqual(em(3, 1), 0,  4) 
     self.assertAlmostEqual(em(3, 2), 0,  4) 
     self.assertAlmostEqual(em(3, 3), 0,  4) 

if __name__ == '__main__': 
    import sys 
    HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm' 
    OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt' 

    unittest.main() 

observations.txt sekwencja obserwacji do testów:

2 
3 
3 
2 
3 
2 
3 
2 
2 
3 
1 
3 
3 
1 
1 
1 
2 
1 
1 
1 
3 
1 
2 
1 
1 
1 
2 
3 
3 
2 
3 
2 
2 

example.hmm, model używany do generowania danych

4 # number of states 
START 
COLD 
HOT 
END 

3 # size of vocab 
1 
2 
3 

# transition matrix 
0.0 0.5 0.5 0.0 # from start 
0.0 0.8 0.1 0.1 # from cold 
0.0 0.1 0.8 0.1 # from hot 
0.0 0.0 0.0 1.0 # from end 

# emission matrix 
0.0 0.0 0.0 # from start 
0.7 0.2 0.1 # from cold 
0.1 0.2 0.7 # from hot 
0.0 0.0 0.0 # from end 
+0

Dziękuję bardzo. Świetna odpowiedź. Twój kod jest nieco ponad moją głową, ale spędzę następne kilka dni próbując to zrozumieć (przykro mi, że jestem nowicjuszem w modelach Markowa). Dzięki jeszcze raz! – Lostsoul

+0

@Dougal, czy możesz rzucić okiem na moje pytanie tutaj http://math.stackexchange.com/q/96629/22327? dzięki. –

Powiązane problemy