2017-04-18 13 views
5

Zaimplementowałem pewien rodzaj sieci neuronowych (GAN: Generative Adversarial Networks) w tensorflow.Brak podniesienia wymiaru ValueError w batch_norm z Tensorflow

To działało jak oczekiwano, aż postanowiłem dodać następujące warstwy normalizacji partia w metodzie generator(z) (zobacz pełny kod poniżej):

out = tf.contrib.layers.batch_norm(out, is_training=False) 

jak pojawia się następujący błąd:

G_sample = generator(Z) 
    File "/Users/Florian/Documents/DeepLearning/tensorflow_stuff/tensorflow_stuff/DCGAN.py", line 84, in generator 
    out = tf.contrib.layers.batch_norm(out, is_training=False)          
    File "/Users/Florian/anaconda2/lib/python2.7/site-packages/tensorflow/contrib/framework/python/ops/arg_scope.py", line 181, in func_with_args 
    return func(*args, **current_args) 
    File "/Users/Florian/anaconda2/lib/python2.7/site-packages/tensorflow/contrib/layers/python/layers/layers.py", line 551, in batch_norm 
    outputs = layer.apply(inputs, training=is_training) 
    File "/Users/Florian/anaconda2/lib/python2.7/site-packages/tensorflow/python/layers/base.py", line 381, in apply 
    return self.__call__(inputs, **kwargs) 
    File "/Users/Florian/anaconda2/lib/python2.7/site-packages/tensorflow/python/layers/base.py", line 328, in __call__ 
    self.build(input_shapes[0]) 
    File "/Users/Florian/anaconda2/lib/python2.7/site-packages/tensorflow/python/layers/normalization.py", line 143, in build 
    input_shape) 
ValueError: ('Input has undefined `axis` dimension. Input shape: ', TensorShape([Dimension(None), Dimension(None), Dimension(None), Dimension(None)])) 

Problem wydaje się wynikać z kształtu [None, None, None, None] wejścia out, ale nie wiem, jak mogę to naprawić.

Oto pełny kod:

from __future__ import division 
from __future__ import division 
from __future__ import print_function 
import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data 
from tensorflow.contrib.layers import batch_norm 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.gridspec as gridspec 
import os 




def leaky_relu(x, alpha): 
    return tf.maximum(alpha * x, x) 




def discriminator(x): 

    with tf.variable_scope('discriminator', reuse=True): 

     # conv_2D accepts shape (batch, height, width, channel) as input so 
     # reshape it 
     x = tf.reshape(x, shape=[-1, 28, 28, 1]) 
     out = tf.nn.conv2d(x, tf.get_variable('D_w_1'), strides=[1, 2, 2, 1], padding='SAME') 
     out = leaky_relu(out, alpha=0.2) 
     #out = tf.nn.dropout(out, keep_prob=0.2) 
     out = tf.nn.conv2d(out, tf.get_variable('D_w_2'), strides=[1, 2, 2, 1], padding='SAME') 
     out = leaky_relu(out, alpha=0.2) 
     #out = tf.nn.dropout(out, keep_prob=0.2) 

     # fully connected layer 
     out = tf.reshape(out, shape=[-1, 7*7*128]) 
     D_logits = tf.matmul(out, tf.get_variable('D_w_fc_1')) 
     #D_logits = tf.nn.sigmoid(D_logits) 
     D_logits = leaky_relu(D_logits, alpha=0.2) 

    return D_logits 




def generator(z): 

    with tf.variable_scope('generator', reuse=True): 
     out = tf.matmul(z, tf.get_variable('G_w_fc_1')) 
     out = tf.nn.relu(out) 

     out = tf.reshape(out, shape=[-1, 7, 7, 128]) 

     out = tf.nn.conv2d_transpose(out, 
            tf.get_variable('G_w_deconv_1'), 
            output_shape=tf.stack([tf.shape(out)[0], 14, 14, 64]), 
            strides=[1, 2, 2, 1], 
            padding='SAME') 
     print(out.get_shape().as_list()) 
     out = tf.contrib.layers.batch_norm(out, is_training=False)          
     out = tf.nn.relu(out) 

     out = tf.nn.conv2d_transpose(out, 
            tf.get_variable('G_w_deconv_2'), 
            output_shape=tf.stack([tf.shape(out)[0], 28, 28, 1]), 
            strides=[1, 2, 2, 1], 
            padding='SAME') 
     out = tf.nn.tanh(out) 


    return out 







def sample_Z(m, n): 
    return np.random.uniform(-1., 1., size=[m, n]) 


def plot(samples): 
    fig = plt.figure(figsize=(4, 4)) 
    gs = gridspec.GridSpec(4, 4) 
    gs.update(wspace=0.05, hspace=0.05) 

    for i, sample in enumerate(samples): 
     ax = plt.subplot(gs[i]) 
     plt.axis('off') 
     ax.set_xticklabels([]) 
     ax.set_yticklabels([]) 
     ax.set_aspect('equal') 
     plt.imshow(sample.reshape(28, 28), cmap='Greys_r') 

    return fig 


if __name__ == '__main__': 


    mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) 

    batch_size = 128 
    # size of generator input 
    Z_dim = 10 
    # batch within an epoch 
    batches_per_epoch = int(np.floor(mnist.train.num_examples/batch_size)) 
    nb_epochs = 20 

    # learning rate 
    learning_rate = 0.00005 # 0.0002 

    Z = tf.placeholder(tf.float32, [batch_size, Z_dim]) 
    X = tf.placeholder(tf.float32, [batch_size, 784]) 

    with tf.variable_scope('discriminator'): 
     D_w_1 = tf.get_variable('D_w_1', initializer=tf.random_normal([5, 5, 1, 64], stddev=0.02)) 
     D_w_2 = tf.get_variable('D_w_2', initializer=tf.random_normal([5, 5, 64, 128], stddev=0.02)) 
     D_w_fc_1 = tf.get_variable('D_w_fc_1', initializer=tf.random_normal([7*7*128, 1], stddev=0.02)) 

    D_var_list = [D_w_1, D_w_2, D_w_fc_1] 


    with tf.variable_scope('generator'): 
     G_w_fc_1 = tf.get_variable('G_w_fc_1', initializer=tf.random_normal([Z_dim, 128*7*7], stddev=0.02)) 
     G_w_deconv_1 = tf.get_variable('G_w_deconv_1', initializer=tf.random_normal([5, 5, 64, 128], stddev=0.02)) 
     G_w_deconv_2 = tf.get_variable('G_w_deconv_2', initializer=tf.random_normal([5, 5, 1, 64], stddev=0.02)) 

    G_var_list = [G_w_fc_1, G_w_deconv_1, G_w_deconv_2] 


    G_sample = generator(Z) 
    D_logit_real = discriminator(X) 
    D_logit_fake = discriminator(G_sample) 


    # objective functions 
    # discriminator aims at maximizing the probability of TRUE data (i.e. from the dataset) and minimizing the probability 
    # of GENERATED/FAKE data: 
    D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) 
    D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) 
    D_loss = D_loss_real + D_loss_fake 

    # generator aims at maximizing the probability of GENERATED/FAKE data (i.e. fool the discriminator) 
    G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake))) 

    D_solver = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(D_loss, var_list=D_var_list) 
    # when optimizing generator, discriminator is kept fixed 
    G_solver = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(G_loss, var_list=G_var_list) 


    with tf.Session() as sess:  

     sess.run(tf.global_variables_initializer()) 

     if not os.path.exists('out/'): 
      os.makedirs('out/') 

     for i_epoch in range(nb_epochs): 

      G_loss_val = 0 
      D_loss_val = 0 

      for i_batch in range(batches_per_epoch): 
       print('batch %i/%i' % (i_batch+1, batches_per_epoch)) 

       X_mb, _ = mnist.train.next_batch(batch_size) 

       # train discriminator 
       _, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, Z_dim)}) 
       D_loss_val += D_loss_curr 

       # train generator 
       _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(batch_size, Z_dim)}) 
       G_loss_val += G_loss_curr 

       if i_batch % 50 == 0: 
        samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)}) 

        fig = plot(samples) 
        plt.savefig('out/%i_%i.png' % (i_epoch, i_batch), bbox_inches='tight') 
        plt.close(fig) 





      print('Iter: {}'.format(i_epoch)) 
      print('D loss: {:.4}'.format(D_loss)) 
      print('G_loss: {:.4}'.format(G_loss)) 
+0

Dodanie 'out.set_shape ([out.get_shape(). As_list() [0], 14, 14, 64]' wydaje się działać, ale nie wiem, czy jest to słuszne, aby rozwiązać początkowy problem. – floflo29

Odpowiedz

2

Jeśli zdasz stały kształt, taki jak [100, 14, 14, 64] jak output_shape, conv2d_transpose powróci tensora z prawidłowym zestawem kształtu. Ale jeśli wprowadzisz nie stały ciąg tensorowy (który musisz zrobić, jeśli nie znasz wielkości partii z góry), conv2d_transpose zakłada, że ​​nie może znać kształtu do momentu uruchomienia wykresu i zwraca Brak kształtu podczas budowy.

Teoretycznie mogło się zdarzyć, że niektóre wymiary są stałe, ale w tej chwili nie jest to wykonywane.

Możesz obejść to, używając out.set_shape([None, 14, 14, 64]) lub out = tf.reshape(out, [-1, 14, 14, 64]). Nie ma potrzeby ustawiania rozmiaru wymiaru wsadowego, ponieważ nie wymaga tego batch_norm.

Jest to omówione na numerach tensorflow 833 i 8972.

1

Kod roboczy znajduje się poniżej. Wystąpiło kilka drobnych błędów w kodzie - być może na podstawie testów przed opublikowaniem pytania - lub może jeszcze nie zostałeś w pełni wykonany, moje zmiany są odnotowywane pod numerem #EDIT:. Musisz zdefiniować kształt, aby użyć normalizacji wsadowej, i możesz to zrobić wcześniej, jeśli chcesz, ale Twoja sugestia jest w porządku. Wolę używać przekształcenia o zmiennym wymiarze za pomocą -1 out = tf.reshape(out, [-1, 14, 14, 64]). Poniższy kod działa na TF> 1 i python> 3.5.

from __future__ import division 
from __future__ import division 
from __future__ import print_function 
import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data 
from tensorflow.contrib.layers import batch_norm 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.gridspec as gridspec 
import os 




def leaky_relu(x, alpha): 
    return tf.maximum(alpha * x, x) 




def discriminator(x): 

    with tf.variable_scope('discriminator', reuse=True): 

     # conv_2D accepts shape (batch, height, width, channel) as input so 
     # reshape it 
     x = tf.reshape(x, shape=[-1, 28, 28, 1]) 
     out = tf.nn.conv2d(x, tf.get_variable('D_w_1'), strides=[1, 2, 2, 1], padding='SAME') 
     out = leaky_relu(out, alpha=0.2) 
     #out = tf.nn.dropout(out, keep_prob=0.2) 
     out = tf.nn.conv2d(out, tf.get_variable('D_w_2'), strides=[1, 2, 2, 1], padding='SAME') 
     out = leaky_relu(out, alpha=0.2) 
     #out = tf.nn.dropout(out, keep_prob=0.2) 

     # fully connected layer 
     out = tf.reshape(out, shape=[-1, 7*7*128]) 
     D_logits = tf.matmul(out, tf.get_variable('D_w_fc_1')) 
     #D_logits = tf.nn.sigmoid(D_logits) 
     D_logits = leaky_relu(D_logits, alpha=0.2) 

    return D_logits 




def generator(z): 

    with tf.variable_scope('generator', reuse=True): 
     out = tf.matmul(z, tf.get_variable('G_w_fc_1')) 
     out = tf.nn.relu(out) 

     out = tf.reshape(out, shape=[-1, 7, 7, 128]) 

     out = tf.nn.conv2d_transpose(out, 
            tf.get_variable('G_w_deconv_1'), 
            output_shape=tf.stack([tf.shape(out)[0], 14, 14, 64]), 
            strides=[1, 2, 2, 1], 
            padding='SAME') 
     print(out.get_shape().as_list()) 
     out = tf.reshape(out, [-1, 14, 14, 64]) #EDIT: You need to define the shape for batch_norm 

     #out.set_shape([out.get_shape().as_list()[0], 14, 14, 64]) 
     out = tf.contrib.layers.batch_norm(out, is_training=False) 
     out = tf.nn.relu(out) 

     out = tf.nn.conv2d_transpose(out, 
            tf.get_variable('G_w_deconv_2'), 
            output_shape=tf.stack([tf.shape(out)[0], 28, 28, 1]), 
            strides=[1, 2, 2, 1], 
            padding='SAME') 
     out = tf.nn.tanh(out) 


    return out 

def sample_Z(m, n): 
    return np.random.uniform(-1., 1., size=[m, n]) 


def plot(samples): 
    fig = plt.figure(figsize=(4, 4)) 
    gs = gridspec.GridSpec(12, 12) #EDIT: This wasn't large enough for the dataset. 
    gs.update(wspace=0.05, hspace=0.05) 

    for i, sample in enumerate(samples): 
     ax = plt.subplot(gs[i]) 
     plt.axis('off') 
     ax.set_xticklabels([]) 
     ax.set_yticklabels([]) 
     ax.set_aspect('equal') 
     plt.imshow(sample.reshape(28, 28), cmap='Greys_r') 

    return fig 


if __name__ == '__main__': 


    mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) 

    batch_size = 128 
    # size of generator input 
    Z_dim = 10 
    # batch within an epoch 
    batches_per_epoch = int(np.floor(mnist.train.num_examples/batch_size)) 
    nb_epochs = 20 

    # learning rate 
    learning_rate = 0.00005 # 0.0002 

    Z = tf.placeholder(tf.float32, [batch_size, Z_dim]) 
    X = tf.placeholder(tf.float32, [batch_size, 784]) 

    with tf.variable_scope('discriminator'): 
     D_w_1 = tf.get_variable('D_w_1', initializer=tf.random_normal([5, 5, 1, 64], stddev=0.02)) 
     D_w_2 = tf.get_variable('D_w_2', initializer=tf.random_normal([5, 5, 64, 128], stddev=0.02)) 
     D_w_fc_1 = tf.get_variable('D_w_fc_1', initializer=tf.random_normal([7*7*128, 1], stddev=0.02)) 

    D_var_list = [D_w_1, D_w_2, D_w_fc_1] 


    with tf.variable_scope('generator'): 
     G_w_fc_1 = tf.get_variable('G_w_fc_1', initializer=tf.random_normal([Z_dim, 128*7*7], stddev=0.02)) 
     G_w_deconv_1 = tf.get_variable('G_w_deconv_1', initializer=tf.random_normal([5, 5, 64, 128], stddev=0.02)) 
     G_w_deconv_2 = tf.get_variable('G_w_deconv_2', initializer=tf.random_normal([5, 5, 1, 64], stddev=0.02)) 

    G_var_list = [G_w_fc_1, G_w_deconv_1, G_w_deconv_2] 


    G_sample = generator(Z) 
    D_logit_real = discriminator(X) 
    D_logit_fake = discriminator(G_sample) 


    # objective functions 
    # discriminator aims at maximizing the probability of TRUE data (i.e. from the dataset) and minimizing the probability 
    # of GENERATED/FAKE data: 
    D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) 
    D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) 
    D_loss = D_loss_real + D_loss_fake 

    # generator aims at maximizing the probability of GENERATED/FAKE data (i.e. fool the discriminator) 
    G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake))) 

    D_solver = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(D_loss, var_list=D_var_list) 
    # when optimizing generator, discriminator is kept fixed 
    G_solver = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(G_loss, var_list=G_var_list) 


    with tf.Session() as sess:  

     sess.run(tf.global_variables_initializer()) 

     if not os.path.exists('out/'): 
      os.makedirs('out/') 

     for i_epoch in range(nb_epochs): 

      G_loss_val = 0 
      D_loss_val = 0 

      for i_batch in range(batches_per_epoch): 
       print('batch %i/%i' % (i_batch+1, batches_per_epoch)) 

       X_mb, _ = mnist.train.next_batch(batch_size) 

       # train discriminator 
       _, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, Z_dim)}) 
       D_loss_val += D_loss_curr 

       # train generator 
       _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(batch_size, Z_dim)}) 
       G_loss_val += G_loss_curr 

       if i_batch % 50 == 0: 
        samples = sess.run(G_sample, feed_dict={Z: sample_Z(batch_size, Z_dim)}) #EDIT: changed to batch_size to match the tensor 

        fig = plot(samples) 
        plt.savefig('out/%i_%i.png' % (i_epoch, i_batch), bbox_inches='tight') 
        plt.close(fig) 

      print('Iter: {}'.format(i_epoch)) 
      print('D loss: {:.4}'.format(D_loss_curr)) #EDIT: You were trying to print the tensor. 
      print('G_loss: {:.4}'.format(G_loss_curr))#EDIT: You were trying to print the tensor. 
Powiązane problemy